RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)								
SECOND YEAR [2017 - 20] B.A./B.Sc. THIRD SEMESTER (July – December) 2018 Mid-Semester Examination, September 2018								
Date : 26/09/2018 MATHEMATICS (General)								
Time : 12 noon - 1 pmPaper: IIIFull Marks: 25								
Answer any one from question nos. 1 & 2 : (1×6)								
1. Calculate the value of y when $x = 102$ from the following table								
	x:	93.0	96.2	100.0	104.2	108.7		
	y:	11.38	12.80	14.70	17.07	19.91		
2. a) Find a real root of the equation $x^3 + x^2 + x + 7 = 0$ by Bisection Method, the answer should be correct up to three significant figures.								
b) For the shift operator E and forward difference operator Δ , prove that $\Delta^2 = (E-1)^2$.							(4 + 2)	
Answer <u>any one</u> from question nos. 3 & 4: $(1 \times$							(1 × 6)	
3. Find the shortest distance between the lines $\frac{x-3}{-3} = \frac{y-8}{1} = \frac{z-3}{-1}$ and $\frac{x+3}{3} = \frac{y+7}{-2} = \frac{z-6}{-4}$.								
4. Find the values of a and b for which the line $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z+3}{3}$ lines on the plane $ax + 3y - 5z + d = 0$.								
5. <i>A</i>	5. Answer <u>any one</u> question of the following: (1×5)							
8	a) Sol	Solve the following L.P.P. graphically.						
	Maximize $z = 2x_1 + x_2$							
	Su	bject to	$x_1 + x_2$	$_2 \geq 5$				
			$2x_1 + 3$	$3x_2 \le 20$				
			$4x_1 + 3$	$3x_2 \le 25$				
			x ₁ ,x ₂	≥ 0				
ł	b) Prove that intersection of two convex sets is also a convex set.							
	Find the extreme points if any, of the set $S = \{(x, y) : x + 2y \le 4, x - y \ge 0, x \le 5\}$.							
6. Answer <u>any one</u> question of the following: (1							(1 × 8)	
8	a) Find the basic feasible solutions of the following set of equations:							
	2x	$_{1} + 3x_{2} - 3$	$x_3 + 4x_4 =$	=8				

(1)

 $x_1 - 2x_2 + 6x_3 - 7x_4 = -3$

b) Solve the L.P.P. by Charnes Big-M method:

Maximize $z=2x_1+3x_2$ Subject to $x_1+x_2 \le 8$ $x_1+2x_2=5$ $2x_1+x_2 \le 8$ $x_1,x_2 \ge 0$

_____ X _____